Herbst 24 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Im Folgenden sei arctan die auf ganz \mathbb{R} definierte Arcustangensfunktion.

- a) Zeigen Sie $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ für alle x > 0.
- b) Zeigen Sie

$$\lim_{x \to \infty} x \left(\frac{\pi}{2} - \arctan x \right) = 1$$

und die Divergenz des uneigentlichen Riemann-Integrals

$$\int_0^\infty \left(\frac{\pi}{2} - \arctan x\right) \mathrm{d}x.$$

c) Zeigen Sie, dass es keine ganze Funktion $g:\mathbb{C}\to\mathbb{C}$ gibt mit $g(x)=\arctan x$ für alle $x\in\mathbb{R}$.

Lösungsvorschlag:

a) Wir betrachten die Funktion $h:(0,\infty)\to\mathbb{R},\ h(x)=\arctan x+\arctan\frac{1}{x}$. Es gilt

$$h'(x) = \frac{1}{1+x^2} + \frac{1}{1+(\frac{1}{x})^2} \cdot \left(-\frac{1}{x^2}\right) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

für alle x>0, d. h. die Ableitung ist konstant 0 und daher ist h konstant. Es gilt $h(1)=2\arctan 1=2\cdot\frac{\pi}{4}=\frac{\pi}{2}$, also ist $h\equiv\frac{\pi}{2}$. Dies beweist die Aussage.

b) Nach Teil a) gilt

$$\lim_{x \to \infty} x \left(\frac{\pi}{2} - \arctan x \right) = \lim_{x \to \infty} x \arctan \frac{1}{x} = \lim_{x \to \infty} \frac{\arctan \frac{1}{x}}{\frac{1}{x}} = \lim_{x \to 0} \frac{\arctan x}{x},$$

auf den letzten Term wollen wir die Regel von l'Hospital anwenden. Dies ist möglich, weil Zähler und Nenner differenzierbare Funktion sind, die für $x\to 0$ gegen 0 konvergieren und weil die Ableitung des Nenners die konstante Einsfunktion ist, die keine Nullstellen hat. Damit folgt

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x^2}}{1} = 1,$$

was zu zeigen war.

Für den zweiten Teil halten wir fest, dass aus der Existenz des obigen Limes die Existenz eines C>0 folgt mit $x>C\implies x\left(\frac{\pi}{2}-\arctan x\right)\geq \frac{1}{2}$, also

$$\int_0^\infty \left(\frac{\pi}{2} - \arctan x\right) dx \ge \int_C^\infty \frac{1}{2x} dx = \infty,$$

wobei die Nichtnegativität des Integranden und die Divergenz des letzten Integrals benutzt wurde.

c) Angenommen es gäbe eine solche Funktion, dann könnten wir g um 0 in eine Potenzreihe entwickeln, die auf ganz \mathbb{C} konvergieren würde (Maximalität des Konvergenzradius). Das heißt für alle $z \in \mathbb{C}$ gilt $g(z) = \sum_{n=0}^{\infty} a_n z^n$, wobei $(a_n)_{n \in \mathbb{N}}$ eine Folge komplexer Zahlen ist und $a_n = g^{(n)}(0)$ für jedes $n \in \mathbb{N}$ gilt. Weil g holomorph ist, aber auf \mathbb{R} mit arctan übereinstimmt, folgt $a_n = \arctan^{(n)}(0)$. Diese Werte lassen sich induktiv oder mithilfe einer geometrischen Reihe bestimmen, es gilt nämlich

$$\arctan'(x) = \frac{1}{1 - (-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

für alle $x \in (-1,1)$. Diese Reihe konvergiert kompakt auf (-1,1), wir können also Integral und Reihenbildung vertauschen und erhalten durch gliedweise Integration

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$$

und daraus $a_n = \frac{(-1)^n}{2n+1}$.

Die Potenzreihe $\sum_{n=0}^{\infty} a_n z^n$ divergiert allerdings für z=i, denn

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} i^{2n+1} = i \sum_{n=0}^{\infty} \frac{1}{2n+1}$$

ist eine harmonische Reihe. Dies widerspricht der Annahme, dass g ganz ist. Alternativ hätte man auch begründen können, dass eine solche Funktion g eindeutig bestimmt wäre und insbesondere $g(x) = \arctan x$ auf (-1,1) erfüllen müsse. Die obige Potenzreihe hätte diese Eigenschaft und besitzt in i eine nicht hebbare Singularität. Damit kann es keine holomorphe Fortsetzung, also auch kein g mit den gesuchten Eigenschaften geben.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$