Herbst 24 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Entscheiden Sie, ob die Funktion cos : $\mathbb{C} \to \mathbb{C}, z \mapsto \cos(z)$ beschränkt auf \mathbb{C} ist. Begründen Sie Ihre Antwort!
- b) Überprüfen Sie, in welchen Punkten $z \in \mathbb{C}$ die Funktion $f : \mathbb{C} \to \mathbb{C}, f(z) = \overline{z} \text{Im}(z)$ komplex differenzierbar ist.
- c) Zeigen Sie, dass es keine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ gibt, mit

$$f\left(\frac{1}{n}\right) = \frac{n}{1+n^2}$$
 für alle $n \in \mathbb{N}$.

Lösungsvorschlag:

- a) Die Funktion ist nicht beschränkt, cos ist eine ganze Funktion, d. h. holomorph auf \mathbb{C} . Wäre sie beschränkt, so wäre sie nach dem Satz von Liouville bereits konstant. Es gilt aber $\cos(0) = 1 \neq 0 = \cos(\frac{\pi}{2})$. Damit ist die Funktion nicht konstant, also auch nicht beschränkt.
- b) Mit z = x + iy gilt $f(z) = f(x + iy) = (x iy)y = xy iy^2$. Wir überprüfen die Cauchy-Riemannschen Differentialgleichungen für $u(x,y) = xy, v(x,y) = -y^2$. Es muss gelten

$$\partial_x u(x,y) = y \stackrel{!}{=} -2y = \partial_y v(x,y),$$

was genau für y = 0 erfüllt ist und

$$\partial_y u(x,y) = x \stackrel{!}{=} 0 = -\partial_x v(x,y),$$

was genau für y=0 erfüllt ist. Alle partiellen Ableitungen sind stetig und das einzige $z\in\mathbb{C}$ für das die Cauchy-Riemannschen Differentialgleichungen gelten, ist $z=0+i\cdot 0=0$. Damit ist f genau in 0 komplex differenzierbar.

c) Angenommen es würde eine solche Funktion f existieren, dann wäre sie bereits eindeutig bestimmt, weil \mathbb{C} ein Gebiet ist und die Menge $\{\frac{1}{n}:n\in\mathbb{N}\}$ den Häufungspunkt $0\in\mathbb{C}$ besitzt.

Wir kürzen den Bruch mit n^2 um die Gleichung $f\left(\frac{1}{n}\right) = \frac{\frac{1}{n}}{1+(\frac{1}{n})^2}$ für alle $n \in \mathbb{N}$ zu erhalten. Wir sehen, dass die Funktion $g: \mathbb{C}\backslash\{-i,i\} \to \mathbb{C}, g(z) = \frac{z}{1+z^2}$ eine holomorphe Funktion ist, die obige Eigenschaft hat. f wäre jetzt eine holomorphe Fortsetzung von g auf \mathbb{C} (eindeutig bestimmt!) also wären beide Singularitäten von g hebbar. Dies ist aber nicht der Fall, weil die Folge $z_n := i + \frac{1}{n}$ gegen i konvergiert und i gegen i konvergiert und i ist um i unbeschränkt und i ist keine hebbare Singularität. Also kann es so ein i nicht geben.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$