Herbst 2014 Thema 2 Aufgabe 5

mks

9. Mai 2025

- a) Es sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $f(t,y) = e^t \sin(y)$ für alle $t,y \in \mathbb{R}$ Zeigen Sie, dass f lokal Lipschitz-stetig bezüglich y ist.
- b) Zeigen Sie, dass das Anfangswertproblem

$$y'(t) = e^t \sin(y(t)), \quad t > 0$$

$$y(0) = 1$$

eine eindeutige Lösung $y:[0,\infty)\to\mathbb{R}$ besitzt.

c) Zeigen Sie, dass y(t) > 0 für alle $t \ge 0$ gilt, wobei y die Lösung aus Aufgabenteil b) bezeichne.

Lösung:

a)

Es gilt $\partial_y f(t,y) = e^t \cos(y)$, was stetig auf ganz \mathbb{R} ist. Nach einem bekannten Satz ist f somit lokal Lipschitz-stetig bezüglich y.

b)

Die Funktion f ist als Produkt stetiger Funktionen stetig auf ganz \mathbb{R} . Nach Teilaufgabe a) ist sie lokal Lipschitzstetig bezüglich y. Nach dem globalen Existenz- und Eindeutigkeitssatz existiert eine eindeutige, maximale Lösung $y:I\to\mathbb{R}$.

Mit einer bekannten Abschätzung für sin gilt $|e^t \sin(y)| = e^t |\sin(y)| \le e^t |y|$. Also ist f(t,y) linear beschränkt bezüglich y. Damit ist $I = \mathbb{R}$. Da $D = [0, \infty) \subseteq \mathbb{R}$ muss die eindeutige Lösung auf D dort mit der auf \mathbb{R} übereinstimmen, woraus die Aussage folgt.

c)

Für $y_k : [0, \infty) \to \mathbb{R}$, $y_k(t) = k\pi$ gilt $y_k'(t) = (k\pi)'0 = e^t \sin(0) = e^t \sin(y(t))$. Damit sind die Funktionen y_k Lösungen der DGL aus b). Da f nach a) lokal Lipschitz-stetig ist, dürfen sich Lösungskurven nicht schneiden. Da y(0) = 1 muss also gelten $y_0(t) = 0 < y(t) < \pi = y_1(t)$, womit insbesondere die Aussage gezeigt ist.