Herbst 13 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} 0 & \text{für } y \le 0 \text{ oder } y \ge x^2, \\ 1 & \text{für } 0 < y < x^2. \end{cases}$$

Beweisen Sie, dass f in (0,0) unstetig ist, aber dort sämtliche Richtungsableitungen existieren.

Lösungsvorschlag:

Wir bestimmen die Richtungsableitungen in der Richtung von $v = (v_1, v_2) \in \mathbb{R}^2$. Wir bestimmen dazu zunächst die einseitigen Richtungsableitungen $\lim_{t\to 0^+} \frac{f(vt)}{t}$. Um dann die Richtungsableitung $\lim_{t\to 0^+} \frac{f(vt)}{t}$ zu erhalten, sollten $\lim_{t\to 0^+} \frac{f(vt)}{t}$ und $\lim_{t\to 0^+} \frac{f((-v)t)}{t}$ existieren und übereinstimmen.

- Ist $v_2 \leq 0$, so ist f(tv) = 0 für alle $t \in \mathbb{R}_+$, denn $(tv)_2 = tv_2 \leq 0$. Die Richtungsableitung ist also $\lim_{t\to 0^+} \frac{f(tv)}{t} = 0$.
- Ist $v_2 > 0$ sowie $v_1 = 0$, so ist nach Definition $f(tv) = f(0, tv_2) = 0$ für alle $t \in \mathbb{R}_+$, denn $tv_2 > 0 = 0^2$; die Richtungsableitung ist also $\lim_{t\to 0^+} \frac{f(tv)}{t} = 0$.
- Ist $v_2 > 0$ und $v_1 \neq 0$, so hat die Gleichung $(tv_2) = (tv_1)^2$ genau eine Lösung für t > 0, nämlich $t = \frac{v_2}{v_1^2}$. Für $t < \frac{v_2}{v_1^2}$ ist $tv_2 > t(tv_1^2) = (tv_1)^2$. Es gilt dann also f(tv) = 0 für $t < \frac{v_2}{v_1^2}$, und die Richtungsableitung ist also gleich 0.

Wir sehen also, dass alle Richtungsableitungen existieren und gleich 0 sind. Die Funktion f ist aber nicht stetig, denn

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{2n^2}\right) = \lim_{n \to \infty} 1 = 1 \neq 0 = f(0,0).$$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$