Herbst 12 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- (a) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit der Eigenschaft, dass $|f(z)| \ge \pi$ für alle $z \in \mathbb{C}$ gilt. Zeigen Sie, dass $f(z) = f(\pi)$ für alle $z \in \mathbb{C}$ gilt.
- (b) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit der Eigenschaft, dass f(z+1) = f(z) = f(z+i) für alle $z \in \mathbb{C}$. Zeigen Sie, dass f konstant ist.

Lösungsvorschlag:

(a) Wegen $f(z)=0 \iff |f(z)|=0$ und $0<\pi$ besitzt f keine Nullstelle. Die Funktion $g:\mathbb{C}\to\mathbb{C},\ g(z)=\frac{1}{f(z)}$ ist ebenso ganz und erfüllt $|g(z)|\leq \frac{1}{\pi}$ für alle $z\in\mathbb{C}$, ist also beschränkt. Nach dem Satz von Liouville ist g konstant und für alle $z\in\mathbb{C}$ gilt

$$f(z) = \frac{1}{g(z)} = \frac{1}{g(\pi)} = f(\pi).$$

(b) Aus den Voraussetzungen folgt iterativ f(z+a+bi)=f(z) für alle $a,b\in\mathbb{Z}$. Mit der Abrundungsfunktion $\lfloor\cdot\rfloor$ können wir für alle $z=x+iy\in\mathbb{C}$ z auch als $z=\lfloor x\rfloor+\lfloor y\rfloor i+x-\lfloor x\rfloor+(y-\lfloor y\rfloor)i$ schreiben, wobei $0\leq x-\lfloor x\rfloor$, $y-\lfloor y\rfloor<1$ gilt. Wegen $\lfloor x\rfloor$, $\lfloor y\rfloor\in\mathbb{Z}$ folgt $f(x+iy)=f(x-\lfloor x\rfloor+(y-\lfloor y\rfloor)i)$ für alle $x,y\in\mathbb{R}$. Die Menge $M:=\{z=x+iy\in\mathbb{C}:0\leq x,y\leq 1\}\subset\mathbb{C}$ ist abgeschlossen und beschränkt, also kompakt. Als ganze Funktion ist f stetig auf M und daher auch $\lfloor f\rfloor$. Letztere besitzt ein Maximum K auf M. Es folgt

$$|f(x+iy)| = |f(x-|x|+(y-|y|)i)| < K$$

für alle $x,y\in\mathbb{R}$. Demnach ist f beschränkt (auf \mathbb{C}) und nach dem Satz von Liouville konstant.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$