Herbst 11 Themennummer 2 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Lösen Sie das Anfangswertproblem

$$y'(t) = e^{y(t)}t^3, \quad y(0) = y_0.$$

Gibt es Anfangswerte $y_0 \in \mathbb{R}$, so dass die Lösung auf ganz \mathbb{R} existiert?

b) Bestimmen Sie die Lösung des Anfangswertproblems

$$y'(t) - 3y(t) = te^{4t}, \quad y(1) = 2.$$

Lösungsvorschlag:

a) Die Gleichung ist trennbar; für alle t im maximalen Existenzintervall gilt

$$e^{-y_0} - e^{-y(t)} = \int_{y_0}^{y(t)} e^{-s} ds = \int_0^t s^3 ds = \frac{t^4}{4},$$

was sich zu $y(t)=-\ln(e^{-y_0}-\frac{t^4}{4})$ umformen lässt. Die Lösung existiert auf $(-e^{\frac{-y_0}{4}},e^{\frac{y_0}{4}})\neq\mathbb{R}$ und ist nicht fortsetzbar, also nein.

b) Wir testen den Ansatz $y(t) = p(t)e^{4t}$ mit einer C^1 -Funktion p, dann ist

$$(p'(t) + p(t))e^{4t} = y'(t) - 3y(t) = te^{4t}$$
, also $p'(t) + p(t) = t$, $p(1) = \frac{2}{e^4}$.

Eine partikuläre Lösung von p' + p = t ist p(t) = t - 1, die allgemeine Lösung der homogenen Gleichung ist ce^{-t} und somit ist die allgemeine Form der Lösung des Hilfsproblems $p(t)=ce^{-t}+t-1$. Für $c=\frac{2}{e^3}$ wird die Anfangsbedingung erfüllt und man erhält die Lösung $y(t)=(\frac{2}{e^3}e^{-t}+t-1)e^{4t}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$