Herbst 11 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Sei h(z) in einer Umgebung von $z_0 \in \mathbb{C}$ holomorph mit $h(z_0) \neq 0$ und sei eine meromorphe Funktion F durch $F(z) = \frac{h(z)}{(z-z_0)^3}$ gegeben. Berechnen Sie das Residuum von F in z_0 .
- b) Klassifizieren Sie für die Funktionen

$$f(z) = \frac{1}{(1+z^2)^3}$$
 und $g(z) = \exp\left(\exp\left(-\frac{1}{z}\right)\right)$

alle isolierten Singularitäten in \mathbb{C} .

c) Berechnen Sie mit der Funktion f aus (b) das Integral

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x.$$

Lösungsvorschlag:

- a) Bei z_0 handelt es sich um einen Pol dritter Ordnung, weil z_0 eine Nullstelle dritter Ordnung des Nenners ist, während der Zähler nicht verschwindet. Nach der Polformel gilt $\operatorname{Res}_{z_0}(F) = \frac{(F(z)(z-z_0)^3)''(z_0)}{2} = \frac{h''(z_0)}{2}$.
- b) Die Singularitäten von f sind genau die Nullstellen des Nenners, also die Punkte $\pm i$. Es gilt $f(z) = \frac{h_1(z)}{(z-i)^3} = \frac{h_2(z)}{(z-(-i)^3)}$ mit $h_1: B_1(i) \to \mathbb{C}, \ z \mapsto \frac{1}{(z+i)^3}$ und $h_2: B_1(-i) \to \mathbb{C}, \ z \mapsto \frac{1}{(z-i)^3}$, wobei h_1, h_2 holomorph sind und keine Nullstellen besitzen. Nach a) sind i und -i also Pole dritter Ordnung von f. Die einzige Singularität von g ist 0, wir werden zeigen, dass diese wesentlich ist. Die Folgen $z_n := \frac{1}{n}, \ w_n := -\frac{1}{n}$ verlaufen in $\mathbb{C}\setminus\{0\}$ und konvergieren gegen 0. Die Folge $g(w_n) = e^{e^n}$ konvergiert für $n \to \infty$ gegen ∞ , also ist 0 keine hebbare Singularität von g. Die Folge $g(z_n) = e^{e^{-n}}$ konvergiert gegen $e^0 = 1$, also ist 0 aber auch kein Pol. Daher muss 0 eine wesentliche Singularität von g sein.
- c) Wir begründen zunächst die Existenz des Integrals. Der Nenner beträgt immer mindestens 1, ist daher strikt positiv, der Integrand also stetig und somit lokal integrabel. Wegen $f(x) \leq \frac{1}{1+x^2} = \arctan'(x)$ folgt aus dem HDI und dem Majorantenkriterium für Integrale die Existenz diesen Integrals. Daher können wir das Integral als $\lim_{R\to\infty} \int_{-R}^R f(x) dx = \lim_{R\to\infty} \int_{\gamma_1^R} f(z) dz$ berechnen, wobei wir für R > 1 den Weg $\gamma_1^R : [-R, R] \to \mathbb{C}$, $t \mapsto t$ und die Funktion f aus (b) betrachten. Sei wieder für R > 1 $\gamma_2^R : [0, \pi] \to \mathbb{C}$, $t \mapsto e^{it}$, dann ist der Weg $\gamma_1^R + \gamma_2^R$ für jedes

Sei wieder für R > 1 $\gamma_2^R : [0, \pi] \to \mathbb{C}$, $t \mapsto e^{it}$, dann ist der Weg $\gamma_1^R + \gamma_2^R$ für jedes R > 1 geschlossen und stückweise stetig differenzierbar. Weiter verläuft der Weg durch keine Singularität von f, sondern umkreist i einmal im positiven Sinn und -i gar nicht.

Die Menge \mathbb{C} ist offen und konvex, $\{-i,i\}$ ist endlich und $f: \mathbb{C}\backslash\{-i,i\} \to \mathbb{C}$ ist holomorph. Nach dem Residuensatz gilt, unter Verwendung von a) und b),

$$\frac{3\pi}{8} = \pi i \frac{12}{(2i)^5} = \pi i h_1''(i) = 2\pi i \operatorname{Res}_i(f) = \int_{\gamma_1^R + \gamma_2^R} f(z) dz = \int_{\gamma_1^R} f(z) dz + \int_{\gamma_2^R} f(z) dz.$$

Die Länge der Kurve γ_2^R beträgt für jedes R>1 πR . Entlang der Spur der Kurve gilt $|f(z)|\leq \frac{1}{(R^2-1)^3}$ nach der umgekehrten Dreiecksungleichung und des streng monotonen Wachstums von $\mathbb{R}\ni t\mapsto t^3$. Laut der Standardabschätzung ist

$$0 \le \left| \int_{\gamma_2^R} f(z) dz \right| \le \frac{\pi R}{(R^2 - 1)^3} \stackrel{R \to \infty}{\longrightarrow} 0.$$

Durch Grenzwertbildung folgt also $\frac{3\pi}{8} = \int_{\infty}^{\infty} f(x) dx + 0$ und das gesuchte Integral beträgt $\frac{3\pi}{8}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$