
Herbst 10 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen
Analysis (vertieftes Lehramt)

Man bestimme die Laurent-Entwicklung von f(z) := z
(z−1)(z−2)

in der Kreisscheibe {z ∈
C : |z| < 1} und in den Kreisringen {z ∈ C : 1 < |z| < 2} und {z ∈ C : 2 < |z|}.
(Hinweis: Man verwende Partialbruchzerlegung.)

Lösungsvorschlag:

Mittels Partialbruchzerlegung (oder durch Raten) erhält man die Darstellung f(z) =
2
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= 1

1−z
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2
. Für |z| < 1 ist auch | z

2
| < 1 und beide Reihen konvergieren

als geometrische Reihen. In der Kreisscheibe gilt also

f(z) =
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n=0

(
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)
zn.

Im ersten, dem beschränkten, Kreisring konvergiert der Subtrahend nach wie vor.
Den Minuenden formen wir zu 1
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z
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um, was wegen z ̸= 0 und |1
z
| < 1

dann wieder als geometrische Konvergiert. Das liefert
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Auf dem zweiten Kreisring formen wir den Minuenden genauso um und schreiben
analog den Subtrahenden als 1
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und folgern

f(z) =
∞∑
n=1

2n − 1

zn
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