Frühjahr 25 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Wir betrachten die holomorphe Funktion

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = \cosh(z) = \frac{e^z + e^{-z}}{2}.$$

Zeigen Sie:

- a) $f(z + \pi i) = -f(z)$ und $f(z + 2\pi i) = f(z)$ für alle $z \in \mathbb{C}$.
- b) f ist surjektiv.
- c) Für ein festes $w \in \mathbb{C}$ haben die Lösungen der Gleichung f(z) = w für jedes $z_0 \in \mathbb{C}$ mit $f(z_0) = w$ die Form

$$z = \pm z_0 + 2\pi i n, \quad n \in \mathbb{Z}.$$

- d) $f(\mathbb{R}) = [1, \infty)$ und $f(\mathbb{R} + \pi i) = (-\infty, 1]$.
- e) f bildet den Streifen $S = \{z \in \mathbb{C} : 0 < \text{Im } z < \pi\}$ biholomorph auf das Gebiet

$$\Omega := \mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty))$$

ab.

Hinweis: Sie dürfen annehmen, dass Abbildungen, die holomorph und bijektiv sind, biholomorph sind.

Lösungsvorschlag:

- a) Nach der Eulerformel gilt für alle $z=x+iy\in\mathbb{C}$ in Normaldarstellung, dass $\exp(z+\pi i)=e^x(\cos(y+\pi)+i\sin(y+\pi))=e^x(-\cos(y)-i\sin(y))=-e^z$. Daraus folgt $\exp(z+\pi i)=-\exp(z)$ und $-\exp(z)=-\exp(z-\pi i+\pi i)=\exp(z-\pi i)$, also $\cosh(z+\pi i)=\frac{e^{z+\pi i}+e^{-z-\pi i}}{2}=\frac{-e^z-e^{-z}}{2}=-\cosh(z)$ und durch zweimalige Anwendung $\cosh(z+2\pi i)=\cosh(z+\pi i+\pi i)=-\cosh(z+\pi i)=\cosh(z)$.
- b) Sei $w \in \mathbb{C}$, dann ist $\cosh z = w \iff (e^z)^2 2we^z + 1 = 0$. Das Polynom $p(x) = x^2 2wx + 1$ besitzt nach dem Fundamentalsatz der Algebra mindestens eine Nullstelle $z_0 \in \mathbb{C}$. Wegen $p(0) = 1 \neq 0$ ist $z_0 \neq 0$ und es gibt ein $w_0 \in \mathbb{C}$ mit $z_0 = \exp(w_0)$ und folglich $\cosh(w_0) = w$, also ist cosh surjektiv.
- c) Seien w, z_0 wie angegeben. Es gilt $f(z) = f(z_0) \iff (e^z)^2 (e^{z_0} + e^{-z_0})e^z + 1 = 0$. Für jedes $z_0 \in \mathbb{C}$ hat das Polynom $q(t) = t^2 2\cosh(z_0)t + 1$ genau die zwei Nullstellen $e^{\pm z_0}$ nach der Lösungsformel. Mit den Eigenschaften von exp gilt $\cosh(z) = w \iff q(e^z) = 0 \iff e^z = e^{\pm z_0} \iff z = \pm z_0 + 2\pi i n, n \in \mathbb{Z}$.
- d) Die Funktion $g: \mathbb{R} \to \mathbb{R}$, $t \mapsto f(t)$ ist glatt mit $g'(t) = \sinh(t) = \frac{e^t e^{-t}}{2}$ und g''(t) = g(t). Auf \mathbb{R} ist $t \mapsto e^t$ streng monoton wachsend, also injektiv. Daher ist $g'(t) = 0 \iff e^t = e^{-t} \iff t = -t \iff t = 0$. Wegen 0 < 1 = g(0) = g''(0) ist 0 ein globales Minimum von g und $g(t) \geq 1 \ \forall t \in \mathbb{R}$. Wegen $\lim_{t \to \infty} g(t) \geq 1$

 $\lim_{t\to\infty}\frac{1}{2}e^t=\infty$, ist g unbeschränkt. Da g stetig ist, folgt $g(\mathbb{R})=f(\mathbb{R})=[1,\infty)$ aus dem Zwischenwertsatz.

Zuletzt ist $f(\mathbb{R} + \pi i) = \{ f(t + \pi i) : t \in \mathbb{R} \} = \{ -f(t) : t \in \mathbb{R} \} = (-\infty, -1].$

e) Die Holomorphie und Surjektivität von $f:S\to f(S)$ ist klar, wir brauchen also nur Injektivitität und $f(S)=\Omega$ zeigen. Falls f(w)=f(z) für $z,w\in S$ gilt, gibt es nach c) ein $n\in\mathbb{Z}$ mit $z=-w+2\pi in$ oder $z=w+2\pi in$. Nach der Definition von S muss dann also $(0,\pi)\ni \mathrm{Im}\ z=2\pi in-\mathrm{Im}\ w\in (\pi(2n-1),2n\pi)$ im ersten Fall gelten, was unmöglich ist (für $n\le 0$ ist $2\pi n\le 0$ und für $n\ge 1$ ist $(2n-1)\pi\ge \pi$). Analog erhält man aus $(0,\pi)\ni \mathrm{Im}\ z=\mathrm{Im}\ w+2\pi n\in (2n\pi,\pi(2n+1)),$ dass nur n=0 möglich ist, woraus dann z=w folgt. Sei $w\in\Omega$, dann gibt es nach b) ein $z_0\in\mathbb{C}$ mit $f(z_0)=w$. Wäre $\mathrm{Im}\ z_0=n\pi$ für ein $n\in\mathbb{Z}$, so wäre nach a) und d) $f(z_0)=f(z_0-2\frac{n}{2}\pi i)\in[1,\infty)$ für gerades n und $f(z_0)=f(z_0-2\frac{n-1}{2}\pi i)\in(-\infty-1]$ für ungerade n in jedem Fall ein Widerspruch. Sei also $n=\left\lceil\frac{\mathrm{Im}\ z_0}{2}\in\mathbb{Z}$. Für gerades n ist $-z_0+2\frac{n}{2}\pi i\in S$ und für ungerades n ist $z_0-2\frac{n-1}{2}\pi i\in S$. Nach c) folgt dann $w=f(z_0)=f(z_0-2\frac{n-1}{2}\pi i)=f(-z_0+2\frac{n}{2}\pi i)$ und weil einer dieser Punkte in S liegen muss, schließlich auch $w\in f(S)$. Sei zuletzt $t\in(-\infty,-1]\cup[1,\infty)$, dann gibt es nach d) ein $w\in\mathbb{R}$ und ein $b\in\{0,1\}$ mit $f(w+b\pi i)=t$. Nach c) ist dann jede Lösung von f(z)=t von der Form $z=\pm w+(2n\pm b)\pi i$ mit $n\in\mathbb{Z}$, d. h. der Imaginärteil von z ist ein ganzzahliges Vielfaches von π , also z kein Element von S. Daher ist $t\notin f(S)$ und $f(S)=\Omega$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$