Frühjahr 16 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Für $n \in \mathbb{N}$ sei $f_n : [0, \infty[\to \mathbb{R}, f_n(x) := \frac{x}{n^2} e^{-\frac{x}{n}}$. Zeigen Sie, dass die Folge auf $[0, \infty[$ gleichmäßig gegen 0 konvergiert, und bestimmen Sie

$$\lim_{n\to\infty}\int_0^\infty f_n(x)\ dx.$$

(b) Sei $f:[0,1]\to\mathbb{R}$ stetig mit f(0)=0. Bestimmen Sie

$$\lim_{n \to \infty} \int_0^1 f(x^n) \ dx.$$

Lösungsvorschlag:

(a) Zunächst halten wir fest, dass f_n für alle $n \in \mathbb{N}$ eine stetige, nichtnegative Funktion auf $[0, \infty[$ ist. Ihre Ableitung ist durch $f'_n(x) = \frac{1}{n^2}e^{-\frac{x}{n}} - \frac{x}{n^3}e^{-\frac{x}{n}} = (n-x)\frac{1}{n^3}e^{-\frac{x}{n}}$ gegeben, deren zweiter Faktor strikt positiv ist. Daher ist die einzige Nullstelle bei x = n und wegen $f'_n(x) > 0$ für $0 \le x < n$ und $f'_n(x) < 0$ für $n < x < \infty$, ist x = n ein lokales Maximum. Aus dem Monotonieverhalten von f folgt sogar, dass bei x = n ein globales Maximum angenommen wird. Daher ist $|f_n(x)| \le f_n(n) = \frac{1}{e^n}$, $x \in [0, \infty)$. Damit ist $||f_n||_{\infty} = \frac{1}{e^n}$ eine Nullfolge und die Folge $(f_n)_{n \in \mathbb{N}}$ per definitionem gleichmäßig konvergent gegen 0.

Um die Integrale zu berechnen, halten wir vorbereitend fest, dass die Funktion $G: \mathbb{R} \to \mathbb{R}, y \mapsto -(y+1)e^{-y}$ eine Stammfunktion von $g: \mathbb{R} \to \mathbb{R}, y \mapsto ye^{-y}$ ist. Wegen $f_n(x) = \frac{1}{n}g(\frac{x}{n})$ gilt für alle T > 0 daher

$$\int_0^T f_n(x) \, \mathrm{d}x = \int_0^T G'\left(\frac{x}{n}\right) \, \mathrm{d}x = G\left(\frac{T}{n}\right) - G(0).$$

Für $T \to \infty$ gilt auch $\frac{T}{n} \to \infty$ und wegen $G(y) = -\frac{y+1}{e^y} \to 0$ für $y \to \infty$ ist

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \lim_{n \to \infty} 1 = 1.$$

(b) Wir zeigen, dass der Grenzwert 0 ist. Sei $\varepsilon > 0$ beliebig, dann gibt es wegen der Stetigkeit von f ein $\delta > 0$ mit $0 \le x < \delta \implies |f(x)| \le \frac{\varepsilon}{2}$. Außerdem ist f als stetige Funktion auf einem Kompaktum beschränkt gegen ein K > 0.

Zudem ist q^n für alle $0 \le q < 1$ eine Nullfolge und es gilt für alle $n \in \mathbb{N}$ die Implikation $0 \le q < r < 1 \implies q^n < r^n$, weil die Funktionen $x \mapsto x^n$ streng monoton wachsend auf $[0, \infty[$ sind. Wir finden also für $c = \max\{1 - \frac{\varepsilon}{2K}, 0\}$ wegen $0 \le c < 1$ ein $N \in \mathbb{N}$ mit $\mathbb{N} \ni n \ge N \implies c^n < \delta$ und insbesondere $0 \le x^n \le c^n < \delta$ für alle $0 \le x \le c$ und daher $|f(x)| < \frac{\varepsilon}{2}$.

Wir setzen nun alles zusammen. Es ist

$$\left| \int_0^1 f(x^n) \, \mathrm{d}x \right| \leq \int_0^1 |f(x^n)| \, \mathrm{d}x = \int_0^c |f(x^n)| \, \mathrm{d}x + \int_c^1 |f(x^n)| \, \mathrm{d}x < c \frac{\varepsilon}{2} + (1-c)K < \varepsilon$$

für alle $n \geq N$, was die Behauptung zeigt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$