Frühjahr 13 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Für $a \in \mathbb{C}$ und r > 0 sei $D(a, r) := \{ z \in \mathbb{C} : |z - a| < r \}.$

- a) Sei $h: D(0,2) \to \mathbb{C}$ eine holomorphe Funktion mit $h(x) \in \mathbb{R}$ für alle $x \in \mathbb{R} \cap D(0,2)$.
 - i) Zeigen Sie, dass

 $h^{(n)}(x) \in \mathbb{R}$ für alle $x \in \mathbb{R} \cap D(0,2)$ und alle $n \in \mathbb{N}$ gilt.

ii) Folgern Sie aus (i) die Beziehung

$$\overline{h(z)} = h(\overline{z})$$
 für alle $z \in D(0,2)$.

iii) Gelte zusätzlich $h(iy) \in \{it : t \in \mathbb{R}\}$ für alle $y \in \mathbb{R} \cap D(0,2)$. Dann ist

$$h(-z) = -h(z)$$
 für alle $z \in D(0,2)$.

Beweisen Sie diese Gleichung!

- b) Sei $f: D(a,r) \to \mathbb{C}$ eine holomorphe Funktion mit f(a) = 0 und $|f(z)| \le 5$ für alle $z \in D(a,r)$.
 - i) Bestimmen Sie eine biholomorphe Abbildung von D(0,1) auf D(a,r).
 - ii) Zeigen Sie, dass

$$|f(z)| \le \frac{5}{r} \cdot |z - a|$$
 für alle $z \in D(a, r)$ gilt.

Lösungsvorschlag:

a) i) Weil h holomorph auf D(0,2) ist, können wir für jedes $x \in \mathbb{R} \cap D(0,2)$ und irgendeine Folge mit Grenzwert x die zugehörigen Differenzenquotienten betrachten. Wir wählen ganz speziell eine reellwertige Folge, z. B. $x_n := x + \frac{1}{n}$. Für n groß genug liegt $x_n \in D$ und konvergiert gegen x. Dies liefert

$$h'(x) = \lim_{n \to \infty} \frac{h(x_n) - h(x)}{x - x_n} \in \overline{\mathbb{R}} = \mathbb{R},$$

also, dass h'(x) ein Grenzwert einer reellwertigen Folge ist (hier geht $h(x) \in \mathbb{R}$ für $x \in \mathbb{R} \cap D(0,2)$ ein) und somit selbst reell ist, da \mathbb{R} abgeschlossen ist.

Damit ist die Aussage für n=1 gezeigt, für allgemeines n folgt die Aussage nun durch Induktion:

Anfang n = 1: Wurde gerade bewiesen.

Annahme $n \in \mathbb{N}$: Die zu zeigende Aussage gelte für ein $n \in \mathbb{N}$.

Schritt $n \mapsto n+1$: Die Funktion $h^{(n)}$ ist holomorph auf D(0,2) und erfüllt per Annahme $h^{(n)}(x) \in \mathbb{R}$ für alle $x \in \mathbb{R} \cap D(0,2)$. Nach dem Induktionsanfang folgt auch $h^{(n+1)}(x) = (h^{(n)})'(x) \in \mathbb{R}$ für alle $x \in \mathbb{R} \cap D(0,2)$. Also stimmt die Aussage auch für n+1.

Nach dem Prinzip vollständiger Induktion gilt die Aussage für alle $n \in \mathbb{N}$.

ii) Wir entwickeln h in eine Potenzreihe um 0, die für |z| < 2 konvergiert. Nach dem Satz von Taylor ist $h(z) = \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} z^n$ für alle $z \in D(0,2)$ und mit der Stetigkeit und \mathbb{R} -Linearität der komplexen Konjugation, sowie $\frac{h^{(n)}(0)}{n!} \in \mathbb{R}$ nach i) folgt

$$\overline{h(z)} = \overline{\sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} z^n} = \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} \overline{z}^n = h(\overline{z}) \quad \text{für alle } z \in D(0,2).$$

iii) Die Funktion $g:D(0,2)\to \mathbb{C},\ g(z):=h(-z)+h(z)$ ist holomorph und für $z=it,t\in (-2,2)$ gilt

$$g(z) = h(-it) + h(it) = h(\overline{it}) + h(it) = \overline{h(it)} + h(it) = -h(it) + h(it) = 0,$$

weil $\overline{it} = -it$ für alle $t \in \mathbb{R}$ gilt. Demnach häufen sich die Nullstellen von g in 0 und g ist nach dem Identitätssatz konstant 0 auf dem Gebiet D(0,2). Daraus folgt h(-z) = -h(z) für alle $z \in D(0,2)$ wie behauptet.

b) i) Die Funktion g(z):=a+rz ist ganz und bijektiv mit Inversem $g^{-1}(z)=\frac{1}{r}(z-a)$. Es gilt

$$g(z) \in D(a,r) \iff |g(z)-a| < r \iff r|z| < r \iff |z| < 1 \iff z \in D(0,1),$$

also ist $g: D(0,1) \to D(a,r)$ biholomorph.

ii) Wir betrachten die Funktion

$$g(z) = \begin{cases} \frac{f(z)}{z-a}, & z \in D(a,r), \ z \neq a \\ f'(a), & z = a \end{cases}.$$

Diese ist holomorph auf D(a,r); für $z \neq a$ ist dies klar und für z=a folgt dies aus dem Riemannschen Hebbarkeitssatz, der Definition der komplexen Ableitung und f(a)=0. Sei nun 0 < s < r beliebig, dann nimmt g nach dem Maximumsprinzip das Betragsmaximum auf dem Gebiet D(a,s) am Rand an. Für alle $z \in \mathbb{C}$ mit |z-a|=s gilt $|g(z)|=|\frac{f(z)}{z-a}|\leq \frac{5}{s}$. Im Grenzübergang $s \to r$ folgt $|g(z)| \leq \frac{5}{r}$ für alle $z \in D(a,r)$. Umstellen liefert $|f(z)|=|g(z)|\cdot |z-a|\leq \frac{5}{r}\cdot |z-a|$.

(Dies ist eine Anpassung vom Beweis des Schwarzschen Lemmas. Man hätte auch die Funktion $\frac{1}{5}f \circ g$ mit g aus i) betrachten können und direkt das Schwarzsche Lemma anwenden können. Daraus würde $|\frac{1}{5}f(g(z))| \leq |z|$ und $|f(z)| \leq 5|g^{-1}(z)| = \frac{5}{r} \cdot |z-a|$ folgen.)

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$