
Frühjahr 09 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen
Analysis (vertieftes Lehramt)

Gegeben sei die skalare Differentialgleichung zweiter Ordnung

ẍ = 2x− 4x3.

a) Bestimmen Sie alle stationären Lösungen dieser Differentialgleichung.

b) Bestimmen Sie eine Erhaltungsgröße (ein Erstes Integral) für diese Differentialglei-
chung.

c) Zeigen Sie, dass alle maximalen Lösungen dieser Gleichung auf ganz R existieren.

d) Skizzieren Sie das Phasenportrait für diese Differentialgleichung. Begründen Sie mit
dessen Hilfe, welche der stationären Lösungen stabil sind, welche instabil. Besitzt
die Differentialgleichung nicht konstante, periodische Lösungen?

Lösungsvorschlag:

Wir formen die Gleichung zunächst in ein äquivalentes System erster Ordnung um,
nämlich zu

ẋ = y,

ẏ = 2x− 4x3.

a) Damit beide Komponenten verschwinden, muss y = 0 = 2x − 4x3 = 2x(1 − 2x2)
sein, also x ∈ {− 1√

2
, 0, 1√

2
}. (Dann ist y = x′ = 0 ebenso erfüllt.)

b) Wir machen den Ansatz E(x, y) = f(x) + g(y). Damit das eine Erhaltungsgröße
ist, muss yf ′(x) + (2x − 4x3)g′(y) = 0 sein. Wählen wir f ′(x) = 2x − 4x3 und
g′ = −y, also z. B. f(x) = x2−x4, g(y) = −1

2
y2, so erhalten wir als Erhaltungsgröße

E(x, y) = x2 − x4 − 1
2
y2, bzw. E(x) = x2 − x4 − 1

2
(x′)2.

c) Die Gleichung besitzt eine stetig differenzierbare, daher lokal lipschitzstetige, Struk-
turfunktion. Wir unterscheiden die Lösungen nach dem Anfangswert bei 0. Durch
die Translationsinvarianz autonomer Lösung, genügt es diese zu betrachten und de-
ren globale Existenz zu beweisen.
Wäre x unbeschränkt, so würde sich für die Erhaltungsgröße aus b) ein Widerspruch
ergeben. Es gilt nämlich E(0) = E(x) = x2(1− x2)− 1

2
(x′)2 < |x|2(1− |x|2) → −∞

für |x| → ∞. Das kann also nicht passieren und x muss beschränkt bleiben. Die
Charakterisierung des Randverhaltens maximaler Lösungen liefert globale Existenz.

d) Wir berechnen die Jacobimatrix des Systems J(x, y) =

(
0 1

2− 12x2 0

)
. Für x = 0

ist J(0,0) =

(
0 1
2 0

)
mit Eigenwerten ±

√
2 instabil nach dem Linearisierungssatz.

Für die anderen beiden Ruhelagen ist J(± 1√
2
,0) =

(
0 1
−4 0

)
mit Eigenwerten ±2i,

was keine Aussage zulässt.
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E(x, y) ist eine Erhaltungsgröße, also sind ±E auch Lyapunovfunktionen. Es ist
∇E(x, y) = (2x− 4x3,−y), weshalb alle Ruhelagen stationär sind. Die Hessematrix

ist HE(x, y) =

(
2− 12x2 0

0 −1

)
. Für beide Ruhelagen ergeben sich −1,−4 als Ei-

genwerte, also handelt es sich um eine negativ definite Matrix und beide Ruhelagen
sind strikte lokale Maxima. Für −E handelt es sich bei den Ruhelagen daher um
strikte lokale Minima. Nach der Direkten Methode von Lyapunov folgt die Stabilität
der beiden Ruhelagen.
Aus der Untersuchung der Erhaltungsgröße folgern wir, dass die Ruhelagen nicht
attraktiv sind. (Es folgt E( lim

t→∞
x(t)) = lim

t→∞
E(x(t)) = E(x(0)), was für verschie-

dene Lösungen nicht mit den Werten der Ruhelage übereinstimmen muss. Würde
x(t) für t → ∞ gegen eine Ruhelage konvergieren, ergäbe sich ein Widerspruch zur
Stetigkeit von E.)
Es existieren auch nicht konstante periodische Lösungen. Dazu betrachten wir die
Erhaltungsgröße des Systems E(x, y) = x2 − x4 − 1

2
y2 und werden zunächst zeigen,

dass alle Niveaulinien E−1(c) für c ∈ R2 kompakt sind. Falls diese leer sind ist
nichts zu zeigen. Abgeschlossenheit folgt aus der Abgeschlossenheit von {c} und der
Stetigkeit von E. Beschränktheit sieht man aus E(x, y) → −∞ für ∥(x, y)∥ → ∞
analog zu b).
Wählen wir c = −1

2
ist die Niveaulinie nichtleer, da (0,1) enthalten ist. Wegen

E(± 1√
2
, 0) = 1

4
und E(0,0) = 0 liegen auf dem Orbit keine Ruhelagen und keine

singulären Punkte. Mit dem Satz über implizite Funktionen finden wir eine Pa-
rametrisierung dieser Niveaulinie, die daher eine geschlossene, nichttriviale Kurve
darstellt. Damit folgt Periodizität der Lösung nach der Klassifikation von Orbits
autonomer Systeme.
Eine Skizze des Phasenportraits ergibt:

Abbildung 1: Phasenportrait

Das Phasenportrait lässt vermuten, dass die beiden Ruhelagen ± 1√
2
stabil aber

nicht attraktiv (also nicht asymptotisch stabil) sind. Man erkennt außerdem, dass
0 instabil ist. (Die Vektorpfeile

”
wirbeln“ um ± 1√

2
herum, aber zeigen in der Nähe

von 0 auch von 0 weg.) Weiter bilden die Vektorpfeile zyklische Pfade jeweils um
± 1√

2
herum, was die Existenz periodischer, nicht konstanter Lösung nahe legt. Dies

deckt sich mit den vorherigen Ergebnissen.

J .F .B.
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